The poster presented by Dr Tahereh Nematiaram outlining our recent work on “Feasibility of p-Doped Molecular Crystals as Transparent Conductive Electrodes via Virtual Screening” received a poster award in the Leverhulme Research Centre 2nd Biennial Symposium.
Transparent conducting materials are an essential component of optoelectronic devices. It is proven difficult, however, to develop high-performance materials that combine the often-incompatible properties of transparency and conductivity, especially for p-type-doped materials. In a recent work, we employed a large set of molecular semiconductors extracted from the Cambridge Structural Database to evaluate the likelihood of transparent conducting material technology based on p-type-doped molecular crystals. Candidates are identified imposing the condition of high highest occupied molecular orbital (HOMO) energy level (for the material to be easily dopable), high charge carrier mobility (for the material to display large conductivity when doped), and a high threshold for energy absorption (for the material to absorb radiation only in the ultraviolet). The latest condition is found to be the most stringent criterion in a virtual screening protocol on a database composed of structures with sufficiently wide two-dimensional (2D) electronic bands. Calculation of excited-state energy is shown to be essential as the HOMO–lowest unoccupied molecular orbital (LUMO) gap cannot be reliably used to predict the transparency of this material class. Molecular semiconductors with desirable mobility are transparent because they display either forbidden electronic transition(s) to the lower excited states or small exchange energy between the frontier orbitals. Both features are difficult to design but can be found in a good number of compounds through virtual screening. Open access to the full paper: